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Abstract— Automatic control of welding processes is rapidly developing and it is important to understand

how the boundary of the weld pool responds to changes in the power. This paper shows how the

response time depends on latent heat and the traverse speed of the heat source. For a slowly-traversing

source, the solution is shown to be a superposition of the transient solution for a stationary source and

the steady solution for a moving source. When the Peclet number, a = va/2D (v = traverse speed,

a = equilibrium radius of a stationary pool, D = thermal diffusivity), is of O(1) the amplitude and
response time vary considerably from the front to the rear of the pool.

NOMENCLATURE

T, temperature;

T,, melting point;

r, radial coordinate;

a, equilibrium radius of pool;

t, time;

s(t), radius of weld pool at time ¢;

D, diffusion coefficient ;

L, latent heat ;

c, specific heat;

k, thermal conductivity;

2, density;

X, coordinate measured in direction of motion
of heat source;

0, angular coordinate measured from
direction of motion;

n, outward normal to pool boundary;

v, speed of material relative to heat source;

p, Laplace transform parameter;

q, strength of heat source.

Non-dimensional parameters
a, Peclet number (va/2D);

u, =T/T,;

R, =r/a;

S, = s/a;

T, = Dt/a?;

¥, =L/cT,;

g, fractional jump in power;
X, = x/a;

w, = ue’*;

0, (r), power function.

1. INTRODUCTION

THE RAPID progress in welding technology has
stimulated considerable scientific interest in the
processes involved. In practice, the weld pool
boundary appears to be sensitive to small variations
in various parameters, e.g. power, traverse speed,
etc.,, and knowledge of its shape is important to
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ensure satisfactory welds. In this paper we are
concerned with the effect of a change in power on the
weld pool boundary and we include the effect of
latent heat for problems which are analytically
tractable.

We begin by considering the response due to a
stationary source of heat and then treat the extra
complication due to motion of the source. Analytic
solutions for these cases can be found provided that
both the fractional change in power and the Peclet
number, o = va/2D, are small, where v is the traverse
speed of the source, a is the equilibrium radius of a
stationary pool and D is the thermal diffusivity of the
material. We also consider the problem where the
Peclet number is not necessarily small, with latent
heat neglected, as this case can also arise in some
welding conditions. We also assume (a) a point
source of heat; (b) uniform thermophysical proper-
ties everywhere; (c) semi-infinite geometry; and (d)
no fluid motion in the pool.

Our Peclet number, «, is identical with
Christiansen’s “n” parameter [1] and is a measure of
the distortion of the weld pool from a hemisphere
due to motion of the source.

2. RESPONSE FOR A STATIONARY SOURCE
WITH LATENT HEAT INCLUDED

In this section we consider a stationary source of
heat. Initially the strength of the source g is constant,
and at time ¢t=0 it is changed to (1+e¢)gq. The
problem is to calculate the transient temperature
variation and the response of the weld pool
boundary, r = s(t). For convenience, we normalise
the variables as

u=T/T,, R=r/a, S=s/a,
7= Dt/a®, y=L/cT,,

where T,, is the melting point, a is the equilibrium
radius of the pool given by

a=gq/2nkT,,
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k is the thermal conductivity, D = k/pc is the thermal
diffusivity, p and ¢ are the density and specific heat
of the material, respectively, and L is the latent heat
of fusion. The ambient temperature is taken to be
zero, for simplicity. The equation for unsteady heat
flow is

(1I/R})E{R*u/oRYAR = fujir, H
and initially the temperature distribution is given by
uy, = 1/R. 2)

For r > ( we must solve equation (1} subject to
the boundary conditions

lim {—R?u/éR} = 1 +g, (3)
R—=0
u=1 _ 4)
[u/eR]S = ;rdS/dr} on R=56),
and
u—0 as R-—ow. 6}

[ B denotes the jump in heat flux across the
melting boundary between the liguid and the sohd.
An exact solution of this problem does not seem
possible but if we restrict our attention to small
changes in power, ie. |¢f « 1, then we can try a
perturbation expansion. Setting

u(R, 1) = L+eu(R, 1), (7)
S{t) = 1+88,(1), (8)

equations (1) and (3)-(6) become, to first order in ¢,
(1/R?)3(R*¢u,/éR)/eR = éu,/ét, )

lim (—R2%0u,/éR) = 1.,
Ek—0

(10)
(1

U, = SI
{0u,/OR] = ydS,/dt

R — w0,

}on R=1

;-0 as

together with the initial condition u, (R,0) = 0. Since
le} «< 1, ie. the boundary is always close to its
equilibrium position, we have been able to apply
Taylor’s theorem about R =1, thus replacing the
conditions on the moving boundary, {(4) and (5), by
{10} and (11) on the fixed boundary R = 1. This
simplification makes the problem linear and amen-
able to Laplace transforms. We obtain the following
conditions on the transformed variables:

(1/R*)d(R*da,/dRY/dR = piiy, (12)
lim (—R%*da,/dR) = 1/p, (13)
R—0
i =5 -}le (14)
[di;/dR] = ypS, ' (15)

i, -0 as R- oo, {16}

where the bar denotes the Laplace transform. The
general solution of (12) is

i, = (4efr” + Be RPYR,
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Choosing solutions of the above form in both the
liquid and solid regions, applying the boundary
conditions (13)—(16), we find

Sy=e 7 p+hp? M- ()

This transform does not appear in standard tables but
we can look at its asymptotic behaviour. For large p
(i.e. small times), {17) approximates to
S = " p+iyp™?),

which can be inverted to give
Sty =erfc 3z V%)

— eIy erfe ((dr™ V24 2012 /5], (18)
For small p (i.e. large times), the binomial theorem
gives
Sy =pte " 1= hyp' (1 —em ")

Fip(l—e~ ¥ P2~ )

Each term in the series can be inverted using
standard tables, yvielding

510} = ¢o(th+yd, (D +7702 (1) +..., (19
where
poft) = erfe (317 13),
¢ (1) = —Fe (1 —e M) /mr)! 2,

¢,(1) = e V¥l —6e~ 2+ 5™ )/B(r13)! 12

Figures 1 and 2 show the variation of §,{t) with 7
for y=0, 0.3, 0.5, 1.0 over the ranges 0 <t <08
and 0 < 7 < 6, respectively. The match between the
small and large time solutions around t=1 i
extremely good.

Stationary heat source
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FiG. 1. Variation of normalized radius of molten boundary
with normalized time, for small times.

3. RESPONSE FOR A SLOWLY-MOVING
SOURCE WITH LATENT HEAT INCLUDED
We now consider the added complication of the
motion of the source. For simplicity, we take the co-
ordinate frame to be at rest relative to the source,
with the material streaming past with uniform speed,
p, in the negative x direction. The heat conduction
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F1G. 2. Variation of normalized radius of molten boundary
with normalized time, for large times.

equation in these moving co-ordinates is

DV2T = 8T/ét—v0T/ox, (20)
and the discontinuity condition on the melting
boundary is

[kéT/én] = Lp{vcos 8+ (8s/dt)E- i}, 2n

on r = s(6,t), where n is the outward normal to the
boundary. The remaining boundary conditions are
equivalent to those for the stationary case.

The general problem of a moving source, with
latent heat included, is very difficult. Even the
steady-state case requires a numerical solution [2]
and the unsteady case is still more complicated [3].
Howegver, when the Peclet number, « = va/2D, is
sufficiently small, it is possible to use a perturbation
approach to determine the steady-state solution [4].
If we make the further assumption that the fractional
change in power is small, ie. |g] « 1, then we may
solve for the transient response with latent heat
included. We shall assume that both « and ¢ are of
the same order and neglect second order terms.

Following Malmuth [4] we define a dimensionless
temperature function

w = (T/T,)e**, (22)
and we are required to solve
V2w —o’w = dw/or, (23)

where V'? is the dimensionless Laplace operator, and
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subject to the boundary conditions

lim (—R?3w/oR) = 1+2, (24)

w =X B 25)
[0w/OR]S =y e (2xcos 0 +3S/t) } on R=5(x).
lim w = o(e*¥), 27N

R-0

and the initial condition given by the steady-state
solution with the normalised power equal to unity.
In obtaining equation (26) we have made the
simplifying assumption that the pool boundary is
only slightly distorted from a hemisphere.

To first order, we expand

w = wy+ew,+aw,, (28)
and
S =8,+¢eS.+as,. (29)
Clearly the zero order solution is
wo = 1/R,
and
So=1

The problem for w,, S, is obtained by setting & = 0 in
equations (23)-(27), yielding

V2w, = dw,/o,
lim (—R*w/dR) = 1,
R-0

we =3, R=1
[ow,/6R] = yas,/ot) " "7 0
lim w, = 0,

R—x

with the initial conditions w,= S, = 0. Since the
above problem is independent of the angle 6, we
assert that w, = w,(R,7) only, and this part of the
problem is identical to that considered for u,,S; in
Section 2. Similarly, the problem for w,,S, is
obtained by setting ¢ = 0 and expanding to order «,
yielding

V32w, = dw,/01, (30)

lim (— R%0w,/6R) = 0, 31
R—0

w, = S,+cosb, (32)

[0w./dR] = y(2 cos 8+ 3S,/d), (33)

lim w, = o(e*¥). (34)

R—o

The initial condition is for the temperature distri-
bution to be the steady-state solution satisfying (31).
We are therefore making no change in the power (as
far as the solution w, is concerned) and so we expect
w, to keep its steady-state form. Thus, we set
0/0t = 0 in (30) and (33). The remaining steady-state
problem has been solved by Malmuth [4], who
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noied that the perturbation scheme breaks down for
R = O(1/a), so that a singular perturbation treat-
ment is required. We do not repeat the details of his
calculation except for the results

Sy= —1—(14+2y/3)cosb, (35)
—1—{2y/3)Rcosf, R <1, (36)
M=) 1-2y/3RYcos8, R>1, (37)

which holds except for R = O(1/a).

The complete solution of the first order problem is
obtained by the superposition of the zero order solution
S, = 1, together with the transient correction for a
stationary source, gw, and the steady-state cor-
rection for a moving source, aw,.

4, RESPONSE FOR A MOVING SOURCE
WITHOUT LATENT HEAT

Under practical welding conditions the Peclet
number, « = va/2D, may be of order unity and it is
also of interest to see how the response time varies
around the pool boundary in this case. As remarked
earlier, an analytic solution with latent heat included
appears to be out of the question. However, we may
determine what happens (at least) qualitatively by
neglecting latent heat and solving the simpler
problem of (23) subject to the condition

iin}) (—R2ew/eR) = 1+ 0 (1),
where Q, (1) = O for 1 < 0, and condition (27).
We set

w(R, 6, 1) = wy(R, 8)+w, (R, 0, T}, (38)

and we note that it is not necessary in this case to
restrict the magnitude of the fractional change in
power. The steady-state temperature profile which
satisfies (23) with &/ft =0 is the well-known sol-
ution [ 5]

we =€ **/R. {39)

Taking Laplace transforms. the transform of the
solution is

Wy (R, 0:p) = (Q,/R)e™ 0"k,

For a step change in power (@, = const. for 7 > 0),
this transform can be inverted to give

wy = (Q,/2R)e*Rerfc(iRt ™12 +ar'?)

+e erfe(JRr 12— e,

On the molten boundary we have

M')()-%'WI — eaRcosH‘

and the position of this boundary, R = $(f.1), is
given by
S — e-xSll + cosfh)
x {1+340,[e*SerfcdSt 72 +a'?)

+erfe(St™ 12 —atr' 2]}, (40)

which may be solved numerically by Newton’s rule.
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Figure 3 shows the variation of the boundary
position with time for various angles for a 50% jump
in power (Q, =05) and =1, eg a power of
around 1kW and a traverse speed of around
2mms~!, in steel. The amplitude of the response is
noticeably greater in the rear of the pool than in the
front though equilibrium is approached more rapidly
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FiG. 3. Variation of normalized position of molten bound-
ary with normalized time for a 50°%; jump in power with the
Peclet number a = 1.

in the front. Figures 4 and 5, respectively, show how
the time for the boundary to move halfway to its new
equilibrium position, 145 varies with the fractional
change in power, Q,, and the Peclet number, «, for
various angular positions around the pool. From
Fig. 4 we see that the characteristic response time is
fairly sensitive to the size of the jump in power in the
rear of the pool though not in the front. For
example, for a change in power from 1 to 1.5kW and
a speed of 23mms™! in steel, the (dimensional)
response time varies from 0.4 to 1.8s from the front
to the rear of the pool.

5. DISCUSSION

It is important for automatic welding control to
know how quickly the pool recovers its shape when
the power is restored to its original value after some
time. Let
0,7 <0,
Q.. const., 0 < 1 < 1,
0,1t > To.

0, (1) =

The equation for the position of the molten
boundary, equation (40), becomes

§=e ST+ G [f(S, 1) f (8,7 —70)]}
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Fi1G. 4. Variation of normalized time for molten boundary
to move halfway to new equilibrium position, t, 5, against
fractional jump in power for a Peclet number o = 1.
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FIG. 5. Variation of normalized time for molten boundary
to move halfway to new equilibrium position, z, 5, against
normalized Peclet number «, for a 509, jump in power.

where

f(S, 1) =eXSerfc3St 12 4 a1'?)

+erfc (187712 —qrl/?),

Figure 6 shows the response of the pool boundary
with 7, =03, a=1 and Q, =0.5, for various
angular positions around the pool. Again, the
variation with angle is significant; in the front part
recovery occurs around t = 0.6 whereas in the rear
of the pool does not even start to move appreciably
until T ~ 0.1 and only recovers at about 7 = 1.
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FIG. 6. Variation of normalized response of weld pool
boundary to a square-wave disturbance in power.

The implications for attempts to control welding
processes automatically are significant. Instan-
taneous measurements of the length, width or area of
the pool are not sufficient to specify the state of the
system. Some recent history of the pool dimensions
is also needed. In particular, data would need to be
stored for about twice as long for a system based on
length measurement than one based on the width,
but the accuracy could be greater by a factor of
three.

Acknowledgement—This paper is published with the per-
mission of the Central Electricity Generating Board.
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LA REPONSE DE LA ZONE FONDUE D’UNE SOUDURE AUX PERTURBATIONS DE
PUISSANCE

Résumé—~—La commande automatique des procédés de soudage se développe rapidement et il est
important de comprendre comment la frontiére de la zone fondue répond aux changements de puissance.
On montre comment le temps de réponse dépend de la chaleur latente et de la vitesse de déplacement de
la source de chaleur. Pour une source se déplacant lentement, la solution est la superposition de la
solution transitoire pour une source stationnaire et de la solution permanente pour une source mobile.
Lorsque le nombre de Péclet, « = va/2D (v = vitesse de deplacement, ¢ = rayon d’équilibre d’une zone
fondue stationnaire, D = diffusivité thermique} est O{1), amplitude ¢t le temps de réponse varient
considérablement de 'avant & Parrigre de la zone fondue.

DIE REAKTION EINES SCHWEISSBADES AUF STORUNGEN IN DER ENERGIEZUFUHR

Zusammenfassung—Die automatische Steuerung von Schweillprozessen ist in schneller Entwicklung
begriffer; hierfiir ist es wichtig zu verstehen, wie die Grenze des SchweiBbades auf Anderungen in der
Energiezufuhr reagiert. In diesem Aufsatz wird iber die Abhdngigkeit der Reaktionszeit von der
Schmelzwiirme und von der Bewegungsgeschwindigkeit der Wiarmequelle berichtet. Es wird gezeigt, dafi
bei einer langsam bewegten Wirmequelle die Losung eine Superposition der instationfiren Losung fur
eine ortsfeste Quelle und der stationdren Losung fir eine bewegte Quelle ist. Wenn die Peclet-Zahl,
a = pa/2D (v = Bewegungsgeschwindigkeit, a = Gleichgewichts-Radius eines ortsfesten Schweiibades,
D = Temperaturleitfihigkeit) die GroBenordnung 1 hat, varileren die Amplitude und die Reaktionszeit
von der Front der SchweiBizone bis zu ihrem hinteren Rand betrichtlich.

PEAKLIUA CBAPOUHOI'O IMMPOITNTABA HA USMEHEHHE MOJABOJIA SHEPI MUK

Aunotauus - - B HacTos1ee BpeMs HHTEHCHBHO PA3BHBAIOTCS METO/bl ABTOMATHYECKOTO KOHTPOS 3a
TIPOUECCAMM CBAPKH, B CBA3M C HEM HPECTABIAAETCH BAXHBIM BLIICHEHHE BJIMAHUS H3MEHEHHA NOA-
BONWMON THEPTHH HA TOBEACHHE IpaHuiibl pacnnasa. Mccneayercs 3aBHCUMOCTD TOCTOSHHON BpeMeEHH
OT CKPHITOM TeNAOTH MUIABJICHAS ¥ CKOPOCTH NEPEMEIICHUS WCTouHMKa Tenna. Tloxazano, 4To npwu
HAJIMMUK MEUIEHHO TePEMELIMIONICTOCH MHCTOYHHKAE DELUEHHE 3aa4M MOXHO NDPEACTABUTE B BHAC
CYNEPRO3MURK NEPEXOAHOIO PELICHHN [U1S HEMOABHKHOIO MCTOYHMKA M CTAUHOHAPHOTO DEIICHHS s
nepemeinarotierocs uerounuxa. Tipu 3uauenun wncna [ekne, o = va/2D (rfe v— CKOPOCTH Tiepeme-
IEHHS MCTOMHMKA, ¢ — PajHyC PACHIaBE B CTALMOHAPHOM COCTORHMH, [ — TEMNEpaTyponmpoBOA-
HOCTb) MOPAZIKA CAMHULIBI, AMILTMTY A H IOCTOAHHAS BPEMEHHU CYILIECTBEHHO H3IMEHRIOTCS 1O [UTHHE UIBA.



