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Abstract-Automatic control of welding processes is rapidly developing and it is important to understand 
how the boundary of the weld pool responds to changes in the power. This paper shows how the 
response time depends on latent heat and the traverse speed of the heat source. For a slowly-traversing 
source, the solution is shown to be a superposition of the transient solution for a stationary source and 
the steady solution for a moving source. When the Peclet number, tl = ua/2D (u = traverse speed, 
a = equilibrium radius of a stationary pool, D = thermal diffusivity), is of O(1) the amplitude and 

response time vary considerably from the front to the rear of the pool. 

NOMENCLATURE 

temperature; 
melting point ; 
radial coordinate; 
equilibrium radius of pool ; 
time; 
radius of weld pool at time t; 
diffusion coefficient : 
latent heat ; 
specific heat ; 
thermal conductivity; 
density; 
coordinate measured in direction of motion 
of heat source; 
angular coordinate measured from 
direction of motion; 
outward normal to pool boundary; 
speed of material relative to heat source; 
Laplace transform parameter ; 
strength of heat source. 

Non-dimensional parameters 

a, Peclet number (42D); 

4 = T/T,; 

R, = r/a; 

S, = s/a; 

7, = Dt/a2; 

Y? = L/CT,; 

&, fractional jump in power ; 
X, = x/a; 

W, = ueyX; 

Q1 (T), power function. 

1. INTRODUCTION 

THE RAPID progress in welding technology has 
stimulated considerable scientific interest in the 
processes involved. In practice, the weld pool 
boundary appears to be sensitive to small variations 
in various parameters, e.g. power, traverse speed, 
etc., and knowledge of its shape is important to 

ensure satisfactory welds. In this paper we are 
concerned with the effect of a change in power on the 
weld pool boundary and we include the effect of 

latent heat for problems which are analytically 
tractable. 

We begin by considering the response due to a 
stationary source of heat and then treat the extra 
complication due to motion of the source. Analytic 
solutions for these cases can be found provided that 
both the fractional change in power and the Peclet 
number, c( = ua/2D, are small, where u is the traverse 
speed of the source, a is the equilibrium radius of a 
stationary pool and D is the thermal diffusivity of the 
material. We also consider the problem where the 
Peclet number is not necessarily small, with latent 
heat neglected, as this case can also arise in some 
welding conditions. We also assume (a) a point 
source of heat; (b) uniform thermophysical proper- 
ties everywhere; (c) semi-infinite geometry; and (d) 
no fluid motion in the pool. 

Our Peclet number, CI, is identical with 
Christiansen’s “n” parameter [l] and is a measure of 
the distortion of the weld pool from a hemisphere 
due to motion of the source. 

2. RESPONSE FOR A STATIONARY SOURCE 
WITH LATENT HEAT INCLUDED 

In this section we consider a stationary source of 
heat. Initially the strength of the source q is constant, 
and at time t = 0 it is changed to (1 + E)q. The 
problem is to calculate the transient temperature 
variation and the response of the weld pool 
boundary, r = s(t). For convenience, we normalise 
the variables as 

u = T/T,, R = rja, S = s/a, 

t = Dt/a’, y = L/CT,, 

where T, is the melting point, a is the equilibrium 
radius of the pool given by 

a = q/2nkT,, 

1533 



I534 J. G. ANDREWS and D. R. ATTHEY 

k is the thermal conductivity, D = k/p is the thermal 
diffusivity, p and c are the density and specific heat 
of the material, respectively, and L is the latent heat 
of fusion. The ambient temperature is taken to be 
zero, for simplicity. The equation for unsteady heat 
flow is 

Choosing solutions of the above form in both the 
liquid and solid regions, applying the boundary 
conditions (13)-( 16), we find 

S, = e-P”2/{~+$yp3~2(1 -e-*P”)1. (17) 

~~~R~~~~R2~u~~R~~~R -- ?q+?~, (11 

and initially the temperature distribution is given by 

u0 = i/R. (2) 

For r > 0 we must solve equation (I) subject to 
the boundary conditions 

tim ( - R’&/?R) = 1 i-8, (31 
R-a 

ll = 1 (4) 
[&/(?R]; = ydS/dT On R = S(‘)’ (5) 

and 

u--+0 as R-+cx; if2 

[ ]i denotes the jump in heat Rux across the 
melting boundary between the liquid and the sotid. 
.4n exact solution of this probfem does not seem 
possible but if we restrict our attention to small 
changes in power, i.e. 1~1 CC 1, then we can try a 
perturbation expansion. Setting 

u(R, T) = 1 +su,(R, T), (7) 

S(T) = 1 +cS,(r), w 

equations (1) and (3f-(6) become, to first order in E, 

~~~R~)~(R~~~~~~R)~~R = i?u,!i%, (9) 

lim (-R2&,/?R) = 1, 
R-O 

together with the initial condition U, (R, 0) = 0. Since 
/&I << 1. i.e. the boundary is always close to its 
equilibrium position, we have been able to apply 
Taylor’s theorem about R = 1, thus replacing the 
conditions on the ~oaing boundary, (4) and (51, by 
(10) and (II) on the fixed boundary R = f. This 
simp~~~~ation makes the problem linear and amen- 
able to tapiace transforms. We obtain the foliowing 
conditions on the transformed variables: 

(1/R2)d(R’dii,/dR)/dR = pi&, 

lim (- RZ dC,/dR) = l/y, 
R-0 

(12) 

(13) 

zi, = s, 
> 

(14) 
[d&/dR] = yp$ R = ‘* USI 

ii-0 as R-+w, (16) 

where the bar denotes the Laplace transform. The 
general solution of (12) is 

c, = {.A eRP”2 +Be-RP”f)/R. 

This transform does not appear in standard tabies but 
we can look at its asymptotic behaviour. For large p 
(i.e. small times), (17) approximates to 

S, = e-p’ ~/(~~~~~3~2~, 

which can be inverted to give 

Sl(zf = erfc (*Ctiz) 
_,zrl +Z~!Y)/; erfc ;&-9+2+2/r), (18) 

For small p (i.e. large times), the binomia1 theorem 
gives 

s, = p-1 e-P1’z{l _+&!z(1 _e-2P’1*) 

+$y2p( 1 -e-2p”2)2-. . .}. 

Each term in the series can be inverted using 
standard tables, yielding 

S,(T) = ~,(r)4Pd,Itzf+r2drzfZ)+... f (1% 

where 

$)o(z) = erfc ($z- ‘!‘), 
djlIfz) c -Qe-*~4r(~-~-Z~‘)/(~~)i~2, 

$z(z) = e-1/4r(l -6e-2’*~5e-6”)/8(nt3)“2. 

Figures 1 and 2 show the variation of S,(r) with z 
for ;i’ = 0, 0.3, 0.5, 1.0 over the ranges 0 ,< 7 < 0.8 
and 0 < z < 6, respectively. The match between the 
small and large time solutions around z = I is 
extremely good. 

Statmary heat source 

a4 

FIG. 1. Variation of normalized radius of molten boundary 
with normalized time, for small times. 

3. RESPONSF, FOR A SLOWLY-MOVING 
SOURCE WITH LATENT MEAT INCLUDED 

We now consider the added complication of the 
motion of the source. For simplicity, we take the co- 
ordinate frame to be at rest relative to the source, 
with the material streaming past with uniform speed, 
u, in the negative .X direction. The heat conduction 
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subject to the boundary conditions 

lim (-R'i?w/aR)= l+&, 
R-O 
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Stationary heat source 

0.8 

FIG. 2. Variation of normalized radius of molten boundary 
with normalized time, for large times. 

equation in these moving co-ordinates is 

DV~T = aT~at-vaT~ax, (20) 

and the discontinuity condition on the melting 

boundary is 

[ka7pn] = ~~j~~~~e+(a~jat)i.e), (21) 

on r = s(Q, t), where n is the outward normal to the 
boundary. The remaining boundary conditions are 
equivalent to those for the stationary case. 

The general problem of a moving source, with 
latent heat included, is very difficult. Even the 
steady-state case requires a numerical solution [2] 
and the unsteady case is still more complicated [3]. 
However, when the Peclet number, tl = va/2D, is 
sufficiently small, it is possible to use a perturbation 
approach to determine the steady-state solution [4]. 
If we make the further assumption that the fractional 
change in power is small, i.e. (~1 << 1, then we may 
solve for the transient response with latent heat 
included. We shall assume that both LY and E are of 
the same order and neglect second order terms. 

Following Malmuth [4] we define a dimensionless 
temperature function 

w = (T/T,,)esx, (22) 

and we are required to solve 

V’~W - azw = aWlaT, (23) 

where V” is the dimensionless Laplace operator, and 

w = eax 
[aW/aR]; = 7 eax(2cr cos e + as/at) on R=S(z), i:ii 

lim w = o(euX), 
R-O 

(27) 

and the initial condition given by the steady-state 
solution with the normalised power equal to unity. 
In obtaining equation (26) we have made the 
simplifying assumption that the pool boundary is 
only slightly distorted from a hemisphere. 

To first order, we expand 

and 

w = wg +.Zw,:+C(w,, (28) 

s = S,+&S,+& 

Clearly the zero order solution is 

w. = l/R, 

and 

(29 

so = 1. 

The problem for w,, S, is obtained by setting a = 0 in 
equations (23)-(27), yielding 

VW, = aw,jat, 

lim (-R'awJaR)= 1, 
R-O 

w, = s, 
[aW,/aR] = yas,/aT On R = ” 

lim w,, = 0, 
R-CT 

with the initial conditions w, = S,, = 0. Since the 
above problem is independent of the angle 0, we 
assert that w, = w,(R,r) only, and this part of the 
problem is identical to that considered for ul,S, in 
Section 2. Similarly, the problem for w,,S, is 
obtained by setting E = 0 and expanding to order CI, 
yielding 

v2W, = aW,/aT, 

lim(- R'aw,/aR)= 0, 
R-O 

(30) 

(31) 

w, = s,+cose, 

[aw,/aR] = ?(2 cos e+ as,/aT), 

lim w, = o(eaX). 
R-CO 

(32) 

(33) 

(34) 

The initial condition is for the temperature distri- 
bution to be the steady-state solution satisfying (31). 
We are therefore making no change in the power (as 
far as the solution w, is concerned) and so we expect 
w, to keep its steady-state form. Thus, we set 
d/dr = 0 in (30) and (33). The remaining steady-state 
problem has been solved by Malmuth [4], who 
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noted that the perturbation scheme breaks down for 
R = O(l/cr), so that a singular perturbation treat- 
ment is required. We do not repeat the details of his 
calculation except for the results 

S, = - 1 -(1+2y/3)cos& (35) 

i 

-I-(2y,‘3)RcosB, R < 1, (36) 
tt’, = 

- 1 - (2~/3R2)cosH, R > 1, (37) 

which holds except for R = O(l/cr). 
The complete solution of the first order problem is 

obtained by the superposition ofthe zero order solution 
So = 1, together with the transient correction for a 
stationary source, cul,, and the steady-state cor- 
rection for a moving source, t(w,. 

4. RESPONSE FOR A MOVING SOURCE 
WITHOUT LATENT HEAT 

Under practical welding conditions the Peclet 
number, a = ~cr!2D, may be of order unity and it is 
also of interest to see how the response time varies 
around the pool boundary in this case. As remarked 
earlier, an analytic solution with latent heat included 
appears to be out of the question. However, we may 
determine what happens (at least) qualitatively by 
neglecting latent heat and solving the simpler 
problem of (23) subject to the condition 

;tnO (- R’?w/?R) = 1 +Qt (T), 

where Qr (T) = 0 for T < 0, and condition (27). 
We set 

w(R, 8, T) = w,(R, @+w,(R, 0, ~1, (38) 

and we note that it is not necessary in this case to 
restrict the magnitude of the fractional change in 
power. The steady-state temperature profile which 
satisfies (23) with r’/?~ = 0 is the well-known sol- 
ution [S] 

,vO = CxR;R. W) 

Taking Laplace transforms, the transform of the 
solution is 

tGI(R, 0; p) = (&/R)e-‘ni+“)’ ‘K, 

For a step change in power (Qr = const. for r > O), 
this transform can be inverted to give 

%V, = (Q,/~R)jeZRerfc(~Rr-“2+rr’~z) 

+e-XXerfc(~Rs-“Z-rr”2)~. 

On the molten boundary we have 

ujO fru, _= eullcoao, 

and the position of this boundary, R = S(B,z), is 
given by 

S = ,-X%1 +co*10 

x {I +fQ,[e2~serfc(~S7~‘~2+ff7fi2) 

+erfc($S7-“2-ff7”2)]f, (401 

which may be solved numerically by Newton’s rule. 

Figure 3 shows the variation of the boundary 
position with time for various angles for a 50% jump 
in power (Q, = 0.5) and a = 1, e.g. a power of 
around 1 kW and a traverse speed of around 
2mms-‘, in steel. The amplitude of the response is 
noticeably greater in the rear of the pool than in the 
front though equilibrium is approached more rapidly 

a =I 

Q,=O5 

FIG. 3, Variation of normalized position of molten bound- 
ary with normalized time for a 50% jump in power with the 

Peclet number a = 1. 

in the front. Figures 4 and 5, respectively, show how 
the time for the boundary to move halfway to its new 
equilibrium position, ro,5 varies with the fractional 
change in power, Q1, and the Peclet number, tl, for 
various angular positions around the pool. From 
Fig. 4 we see that the characteristic response time is 
fairly sensitive to the size of the jump in power in the 
rear of the pool though not in the front. For 
example, for a change in power from 1 to 1.5 kW and 
a speed of 2.3 mms-’ in steel, the (dimensional) 
response time varies from 0.4 to 1.8 s from the front 
to the rear of the pool. 

5. DISCUSSION 

It is important for automatic welding control to 
know how quickly the pool recovers its shape when 
the power is restored to its originai value after some 
time. Let 

I 

0, r G 0, 
Qr(r) = Q1, const., 0 < t 6 zo, 

0, 7 > 70. 

The equation for the position of the molten 
boundary, equation (40), becomes 

S=e~“S~i+c”U~(l+Q,~f(~,~)-f(~,z-~o)J), 
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2 

FIG. 4. Variation of normalized time for molten boundary 
to move halfway to new equilibrium position, r0,5r against 

fractional jump in power for a Peclet number a = 1. 

To.5 

FIG. 5. Variation of normalized time for molten boundary 
to move halfway to new equilibrium position, r0.5, against 

normalized Peclet number t(, for a 50% jump in power. 

where 

f(S, T) = e2”Serfc(+St-“2 +c~r”~) 

+erfc(fSr- li2 - c&‘). 

Figure 6 shows the response of the pool boundary 

with me = 0.3, c( = 1 and Qi = 0.5, for various 
angular positions around the pool. Again, the 
variation with angle is significant; in the front part 
recovery occurs around z = 0.6 whereas in the rear 
of the pool does not even start to move appreciably 
until z ?: 0.1 and only recovers at about 7 = 1. 
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0 05 
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1.0 

l- 

FIG. 6. Variation of normalized response of weld pool 
boundary to a square-wave disturbance in power. 

The implications for attempts to control welding 

processes automatically are significant. Instan- 
taneous measurements of the length, width or area of 
the pool are not sufficient to specify the state of the 
system. Some recent history of the pool dimensions 
is also needed. In particular, data would need to be 
stored for about twice as long for a system based on 
length measurement than one based on the width, 
but the accuracy could be greater by a factor of 
three. 
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LA REPONSE DE LA ZONE FONDUE D’UNE SOUDURE AUX PERTURBATIONS DE 
PUISSANCE 

R&urn&-La commande automatique des pro&%% de soudage se dtveloppe rapidement et il est 
important de comprendre comment la front&e de la zone fondue rtpond aux changements de puissance. 
On montre comment le temps de riponse di7pend de la chaleur latente et de la vitesse de d&placement de 
la source de chaleur. Pour une source se dtplacant lentement, la solution est la superposition de la 

solution transitoire pour une source stationnaire et de la solution permanente pour une source mobile. 
Lorsque le nombre de P&let, LX = V&D (1. = vitesse de d&placement, ri = rayon d’&quilibre d’une zone 
fondue stationnaire, D = diffusivitt- thermique) est O(l), I’amplitude et le temps de r&Onse varient 

~onsid~rablement de I’avant .G I’arrit!re de la zone fondue. 

DIE REAKTION EINES SCHWEISSBADES AUF STijRUNGEN IN DER ENERGIEZUFUHR 

Zusammenfassung-Die automatische Steuerung von SchweiBprozessen ist in schneller Entwicklung 
begriffen; hierfir ist es wichtig zu verstehen, wie die Grenze des SchweiRbades auf ;inderungen in der 
Energiezufuhr reagiert. In diesem Aufsatz wird iiber die Abhingigkeit der Reaktionszeit von der 
SchmelzwLrme und von der Bewegungsgeschwindigkeit der Warmequelle berichtet. Es wird gezeigt, daR 
bei einer langsam bewegten Warmequelle die L6sung eine Superposition der instationaren LGsung fiir 
eine ortsfeste Quelle und der stationsren Lijsung fiir eine bewgte Quelle ist. Wenn die Peclet-Zahl, 
a = ua/ZL) (1’ = Bewegungsgeschwindigkeit. a = Gleichgewi~hts-Radius eines ortsfesten S~hweiB~des, 
D = Temperaturleit~higkeit) die Gr~~enordnung 1 hat, variieren die Amplitude und die Reaktionszeit 

von der Front der Schweil3zone bis zu ihrem hinteren Rand betr%chtIich. 

PEAKL_IMII CBAPOqHOl-0 IIPOIUIABA HA M3MEHEHME nOABOflA 3HEPI-MM 

AHHOTaUHn B HacTosmee spear HHT~HCMBHO pa3awsaroTcn MeToilbl aBTobiaTwecKof0 ~0~TponR 38 

npoueccaw caap~~, B cB113w c qeM npencraBn8eTcn aaxHbIh4 8bnicHefwe S~ARHMR H3MeHeHw noa- 

sonw~oi! ‘weprm4 Ha noBeilefflfe rpanrrubr pacnnaea. Mccnenyexn 3awewocTb ~~CTOSHHO~~ BpeiweHu 

OT CKpblTOit TenflOTbI njlaBjle”AIl N CKOpOCTH nepeMeme”NS NCTOYHIIKa Ten.‘Ia. nOKa3aHO. VT0 npH 

Haixwmi ~e‘~~~e”~~* ne~~ema~mer~~ ~~To~~~~d petueHIie 3aflaWi MomHo n~~cTaanTb a atrae 
~yn~pnO~~u~~ nepeXOa”Oio pWIeHIt% &WI H~nO~a~~~OrO ACTOqHAKa li CTailnO~dpHOrO pemeHH% iFiX 

nepeMeuwouieroca NcTovHHKa. FIpu wa~eiw+ wcna neK:re. c1= rtr/ZD (me L’- cKopocTb nepehle- 
metiHn HcT*YnMKa. u ~ panrryc pacnnaea a cTauMonapHobi COCT~IIHMI~. D - -re~mepafyponpoeon- 
HOCTb) nOp,,.LIKa eflM”MUb,. aM”JfnTyfia ‘, ,,OCToIlHHaR BFMeHM CymeCTBeHHO H?MeHT(K)TCII “0 &WHe WRa. 


